FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE

In-situ measurement of LFC and other process heat collectors

Sven Fahr, Annie Hofer

Fraunhofer Institute for Solar Energy Systems ISE

2nd FRESH NRG Workshop (D7.3) Milan, September 24th 2014

www.ise.fraunhofer.de

AGENDA

- Motivation and background
- Testing concentrating collectors according to ISO 9806
- Dynamic Testing Procedure
- Comparison QDT vs. DT
- Remaining issues for in-situ measurements
- Certification of concentrating collectors
- Summary and Outlook

Motivation and Background Reasons for in-situ measurement

- Size limitations in lab-testing
- Often disadvantageous weather and irradiation conditions at Testlab sites
- vast investment needs for high temperature test loops
- Reducing testing costs for manufacturers

Motivation and Background **Testing standard and deficits**

- EN ISO 9806:2013 includes concentrating collectors in its scope
- provides two methods: steady-state test (SST) and quasidynamic test (QDT)

BUT

- In-situ measurements not mentioned
- No adaption / extension of methodologies in standard

no ready-made solutions for large-scale and technically challenging collectors

Testing concentrating collectors according to ISO 9806 Methods and challenges

- SST not well suited for concentrating collectors, especially LFC, and in-situ measurement
- QDT needs to be modified for LFC

$$\frac{\dot{Q}_{out_col}}{A_{ap}} = \frac{\eta_{0,b}}{K_b(\theta_t,\theta_l)} \cdot K_b(\theta_t,\theta_l) \cdot G_b + \frac{\eta_{0,b}}{\eta_{0,b}} \cdot K_d \cdot G_d - c_1 \cdot (T_m - T_{amb}) - c_2 \cdot (T_m - T_{amb})^2$$

$$-c_5 \frac{dT_m}{dt} \quad \text{Reduced model applicable for most concentrating collectors}$$

$$\longrightarrow \text{Challenge in measurement technology, test-loop design}$$

$$\longrightarrow \text{Challenge in parametrization}$$

Testing concentrating collectors according to ISO 9806 LFC: η_{opt} and Incidence Angle Modifier

LFC has two-dimensional IAM

Factorization of IAM_{LFC} in transversal and longitudinal part

Testing concentrating collectors according to ISO 9806 LFC: η_{opt} and Incidence Angle Modifier

Testing concentrating collectors according to ISO 9806 LFC: η_{opt} and Incidence Angle Modifier

Testing concentrating collectors according to ISO 9806 QDT in-situ measurement of LFC

Results from in-situ measurement on LFC done by ISE

- Good results for optical parameters
- On-going investigations on identification of heat loss parameters

Testing concentrating collectors according to ISO 9806 Limits to the QDT for in-situ measurement

- Installation set-ups may not be suitable
 - Variations inlet temperature and mass flow strictly limited
 - η_{opt} -conditions can often not be realized
- Dependency on system operator
 - Warm-up / cool-down sequences cannot be used
- → Fully dynamic test procedure (DT) has potential to solve these problems
- → DT-Method has been developed at ISE and successfully compared to QDT
 - → A. Hofer et al.: Comparison of Two Different (Quasi-) Dynamic Testing Methods for the Performance Evaluation of a Linear Fresnel Process Heat Collector, SolarPACES 2014, Beijing
 - \rightarrow www.sciencedirect.com

Dynamic Testing Procedure

Alternative Performance Evaluation for in-situ

- Plug-flow/multi-node model
- Complexity of the model requires higher computational effort
- Temperatures, mass flow and DNI may vary without restraint
- Possibility of evaluating warm-up and cool-down measurement periods

Comparison QDT vs. DT Measurement Data Base

a) measured and simulated data base for QDT-metho b) measured and simulated data base for DT-method

Accredited testing procedure

Higher degrees of freedom

Comparison QDT vs. DT Identified Optical Parameters

Identified RMS of $\eta_{opt,0}$ -values = ±0,009 < ±0,02 = results reached in Round Robin Test²)

Absolute mean deviation over entire angle space for optical efficiency η_{opt} ensues differences of only < 0.0098</p>

2) Weißmüller et al. Final Report - Proficiency Test; QAiST testing of solar collectors and systems. By: DAkkS, Marl, 2012.

Remaining issues for in-situ testing

- Installation of sensors → inline vs. Clamp-on
 - Mass flow clamp-on possible but expensive
 - Temperature clamp-on difficult
- Calibration of sensors
- Heat transfer fluid
- Surveillance of measurement
 - cleaning of mirrors and sensors
 - Reflectance measurement
 - Monitoring of tracking devices
- Data transfer from remote areas

Certification of concentrating collectors Functional testing and safety features

Test	Safety feature / substitute
Dry Exposure	No-flow / high temperature protection / UPS
Internal pressure	Certificate by other approved institution
Internal thermal shock	No-flow / high temperature protection / UPS
External thermal shock	No cutback for concentrating collectors
High temperature resistance	No-flow / high temperature protection / UPS
Rain penetration	Procedure to be designed by TestLab
Mechanical load	Wind / snow load protection, Procedure designed by TestLab

- Manufacturer to submit detailed info on all active and passive controls (sensors, motors, actuators etc.) including control set points and parameters
- TestLab establishes test cycle to verify their suitable operation

Certification of concentrating collectors Accredited TestLab / Test report

- All tests to be performed by accredited Testlab
- Testlab files report including results from efficiency testing and functional tests in accordance with ISO 9806
- Manufacturer applies for Certification

---> Presentation on certification issues by Korbinian Kramer

Summary and Outlook

- Characterization of LFC in strict accordance with ISO 9806 not possible
- Enhanced QDT-method based on ISO 9806 has shown good results for optical parameters of LFC
- Comparison with Dynamic Test Procedure has shown good compliance
- Further investigations on determination of heat loss parameters on-going
- Possibility of in-situ measurement strongly depending on installation set-up
- Large potential for DT in in-situ measurement
- Remaining issues with sensor selection and measurement surveillance

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Sven Fahr

Annie Hofer

sven.fahr@ise.fraunhofer.de www.ise.fraunhofer.de annie.hofer@ise.fraunhofer.de

